
SYSTEM INFORMATION DECOMPOSITION

Aobo Lyu*1,2, Bing Yuan2, Ou Deng3, Mingzhe Yang4,2, Andrew Clark1, and Jiang Zhang*4,2

1Department of Electrical and Systems Engineering, Washington University in St. Louis,
St. Louis, Missouri, United States of America, 63130

2Swarma Research, Beijing, China, 102308
3Graduate School of Human Sciences, Waseda University, Tokorozawa city, Saitama, Japan, 359-1192

4School of Systems Science, Beijing Normal University, Beijing, China, 100875

ABSTRACT

To characterize complex higher-order interactions among variables in a system, we introduce a
new framework for decomposing the information entropy of variables in a system, termed System
Information Decomposition (SID). Diverging from Partial Information Decomposition (PID) cor-
relation methods, which quantify the interaction between a single target variable and a collection
of source variables, SID extends those approaches by equally examining the interactions among all
system variables. Specifically, we establish the robustness of the SID framework by proving all the
information atoms are symmetric, which detaches the unique, redundant, and synergistic information
from the specific target variable, empowering them to describe the interactions between variables.
Additionally, we analyze the relationship between SID and existing information measures and pro-
pose several properties that SID quantitative methods should follow. Furthermore, by employing
an illustrative example, we demonstrate that SID uncovers higher-order interaction relationships
among variables that cannot be captured by current measures of probability and information and
provide two approximate calculation methods verified by this case. This advance in higher-order
measures enables SID to explain why Holism posits that some systems cannot be decomposed without
losing characteristics under existing measures and offers a potential quantification framework for
higher-order relationships across a broad spectrum of disciplines.

Keywords Information decomposition · Information entropy · Complex systems · Multivariate system · System
decomposition

1 Introduction

Systems Science is a multidisciplinary field investigating the relationships and interactions among internal variables
within a system, with applications spanning neuroscience, biology, social sciences, engineering, and finance [1, 2].
Complex systems are defined by many interconnected variables that engage in intricate interactions, the understanding
of which is critical for predicting emergent properties, devising novel treatments, and optimizing system performance.

In information theory, mutual information is a widely employed method for quantifying interactions between two
variables by encapsulating shared information or reducing uncertainty facilitated by each variable [3]. However, mutual
information is restricted to describing pairwise interactions, which often needs to be revised for analyzing complex
systems that necessitate multivariate interaction assessments.

As a solution, Beer et al. introduced the Partial Information Decomposition (PID) method, which characterizes
information interactions between a target variable and multiple source variables by decomposing the mutual information
shared among them [4]. In the past ten years, PID and related theories, such as Information Flow Modes [5] and
integrated information theory [6], have been applied in many fields, such as quantitative identification of Causal
Emergence [7], dynamical process analysis [8] and information disclosure [9, 10]. However, PID-related techniques
only decompose the partial information of a single target variable at a time. This leads to the fact that selecting or
constructing a suitable and plausible target variable can be challenging or even unfeasible when addressing complex
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systems problems and also raises questions as to why certain variables are prioritized as targets over others. Moreover,
this variable-specific perspective results in a unidirectional relationship between the specified target variable and source
variable, which makes information atoms bound to a specific target variable and insufficient for a comprehensive
description of the relationships among variables. This further limits our exploration of system functions and properties,
as many originate from the relationship between system variables rather than specific variables or their asymmetric
properties.

To overcome these limitations, we need a system analysis method based on a system perspective, analogous to the
synchronization model [11] or the Ising model [12], rather than a variable perspective like PID. Furthermore, this
method should capture the nature and characteristics of the system without specifying or introducing any special variable
and consider all the interactive relationships among all variables in the system, including pairwise and higher-order
relationships. Therefore, we propose System Information Decomposition (SID), an innovative method that treats all
system variables equally and effectively captures their intricate interactions. This novel approach enhances our capacity
to scrutinize and understand the complexities of multivariate systems.

Specifically, we expand the PID framework to a system perspective by proving the symmetry of information atoms;
that is, the information atoms obtained by decomposing the variables’ information entropy are independent of the
choice of a target variable. Based on this, we put forward a general SID framework, wherein redundant, synergistic,
and unique information atoms become a variable system’s property reflecting complex (pairwise and higher-order)
relationships among variables. Furthermore, we explore the connections between existing information entropy indicators
and the information atom within the SID framework while outlining the necessary properties for information atom
quantification and proposing several viable calculation approaches. Through a detailed case analysis, we provide an
intuitive demonstration that SID can unveil higher-order relationships within the system that cannot be captured by
existing probability or information measures and then propose two viable calculation approaches. Finally, we discuss
SID’s potential application scenarios and implications from the philosophical perspective of system decomposition and
from areas such as higher-order networks and causal science.

Our contributions to Information and System Science are twofold. Firstly, with its calculation approaches, the SID
framework broadens the application of information decomposition methods in complex systems by introducing a
methodology to decompose all variables within a system. Secondly, this framework reveals previously unexplored
higher-order relationship dimensions that cannot be represented by existing probability or information measures,
providing a potential data-driven quantitative framework for Higher-order Networks related research.

The remainder of this paper is organized as follows. Section 2 reviews the development of information theory, PID, and
related research. Section 3 extends the PID method to multivariate system scenarios, defines SID, shows the connections
between existing information entropy indicators and the information atom, and details the information atom calculation
properties. Section 4 intuitively presents the characteristics of the SID framework through case analysis and gives two
calculation approaches. The significance and potential applications of SID are discussed in Section 5.

2 Information Decomposition

2.1 Information Theory Framework

Shannon’s classical information theory has provided a robust foundation for understanding information entropy [3].
Mutual information and conditional entropy further decompose information and joint entropy according to the pairwise
relationship between variables. This can be intuitively shown in Venn diagrams 1, a precise tool for depicting the
information composition within systems. In this paper, we explore the potential of Venn diagrams to provide valuable
insights into the complex decomposition of multivariate systems and extend the entropy decomposition methods of
classical information theory.

2.2 Partial Information Decomposition Framework

In classical information theory, the joint mutual information may occasionally be larger or smaller than the sum of the
mutual information between individual variables. Consequently, traditional redundant information calculations may
yield negative values, contradicting our intuitive understanding. To address this phenomenon, Beer et al. proposed the
Partial Information Decomposition (PID) framework [4].

The PID framework facilitates the decomposition of joint mutual information between multiple source variables and
a target variable. Specifically, for a random target variable Y and a random source variables X = X1, X2, · · · , Xn,
the PID framework allows for the decomposition of the information that X provides about Y into information atoms.
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Figure 1: Information Theory Venn Diagram.

These atoms represent the partial information contributed by various subsets of X , individually or jointly, providing a
more nuanced understanding of the relationships between the target and source variables.

Considering the simplest case of a system with three variables, one can employ a Venn diagram to elucidate their
interactions [4]. The unique information Un(Y : X1) from X1 signifies the information that X1 provides to Y ,
which is not provided by X2 and vice versa. In other words, unique information refers to the contribution made by a
specific source variable to the target variable that is exclusive to that variable and not shared by other source variables.
Redundant information Red(Y : X1, X2) represents the common or overlapping information that X1 and X2 provide
to Y . Synergistic information Syn(Y : X1, X2) captures the combined contribution of X1 and X2 to Y , which cannot
be obtained from either variable individually.

Figure 2: Venn Diagram of PID.

Definition 1 (Redundant Information). For an arbitrary variable system, we can select any variable as the target
variable Y and the remaining variables as the source variables X1, · · · , Xn. The redundant information Red(Y :
X1, · · · , Xn) denotes the common or overlapping information provided by the source variables [4], which is contained
in each source [13].

Redundant information has the following properties [4]:

Axiom 1 (Symmetry of source variables). Red(Y : X) is invariant to the permutation of X. For the source variables
Xi and Xj from {X1, · · · , Xn},i, j ∈ {1 · · ·n} , there is Red(Y : Xi, · · ·Xj) = Red(Y : Xj , · · ·Xi).
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Axiom 2 (Self-redundancy). When there is only one source variable, the redundant information is equivalent to the
mutual information between the target variable Y and the source variable Xi, i.e., Red(Y : Xi) = I(Y : Xi).

Axiom 3 (Monotonicity). The redundancy should exhibit a monotonically decreasing behavior with the inclusion of
additional inputs, i.e. Red(Y : X1, · · · , Xn) ≤ Red(Y : X1, · · · , Xn−1), where n ∈ N .

Despite numerous quantitative definitions for PID, a unified definition still needs to be discovered, primarily due to
negative solutions. Such inconsistencies undermine the notion of information entropy as a non-negative measure of
uncertainty. To circumvent reliance on a specific quantitative method, we employ classical mutual information and
conditional entropy for calculating the sum of the information entropy of certain information atoms. Although this
approach does not permit the precise calculation of individual information atoms [4, 14], it ensures that the framework
remains independent of any specific PID calculation methods. Consequently, when a particular PID calculation method
computes the value of one information atom, the information entropy of the remaining information atoms is determined.

Lemma 1 (Quantitative Computation). In a three-variable system with a target variable Y and source variables Xi

and Xj , the following relationships hold:

Syn(Y : Xi, Xj) +Red(Y : Xi, Xj) + Un(Y : Xi) + Un(Y : Xj) = I(Y : Xi, Xj) [4]

Un(Y : Xi) + Syn(Y : Xi, Xj) = I(Y : Xi|Xj) = H(Y |Xj)−H(Y |Xi, Xj) [15]

Un(Y : Xi) +Red(Y : Xi, Xj) = I(Xi : Y ) [16]

2.3 A set-theoretic understanding of PID

Although no perfect quantitative definition exists, several enlightening perspectives on PID have been proposed
[4, 17, 18, 19, 20, 16]. In addition to those methods, a set theory may allow us to explore the properties of PID more
deeply. Kolchinsky’s work [13] offers an understanding based on set theory. Given that PID is inspired by an analogy
between information theory and set theory, the redundant information can be understood as information sets that the
sources provide to the target. More specifically, the definition of set intersection ∩{Xi} in set theory means the most
extensive set that is contained in all of the Xi. These set-theoretic definitions can be mapped into information-theoretic
terms by treating “sets” as random variables, “set size” as entropy, and “set inclusion” as an ordering relation <, which
indicates when one random variable is more informative than another. One example of a partial order is Q < X if and
only if H(Q|X) = 0.

Considering a set of sources variables X1, · · · , Xn and a target Y , the PID aims to decompose Red(Y : X1, · · · , Xn),
the total same information provided by all sources about the target, into a set of non-negative terms. Therefore,
redundant information can be viewed as the "intersection" of the information contributed by different sources, leading
to the following definition:

Lemma 2 (Set Intersection of Information [13] ). For a variable system, the redundant information from the source
variables X1, · · · , Xn to the target variable Y is the information that all source variables can provide to the target
variable, the largest mutual information between the target variable and information atom Q belonging to all source
variables. That is

Red(Y : X1, · · · , Xn) = I∩(X1, · · · , Xn → Y ) := sup{I(Q : Y ) : Q < Xi,∀i ∈ {1 · · ·n}}

3 System Information Decomposition

In this section, we develop a mathematical framework of SID. The objective of this framework is to decompose the
information of all variables within a system based on their interrelationships. By addressing the limitation of PID, which
focuses solely on a single target variable, we progress towards multi-variable information decomposition for systems.

3.1 Extension of PID in a System Scenario

The PID method only decomposes joint mutual information between multiple source variables and a specific target
variable, as illustrated by the outermost circle of the Venn diagram in Figure 2. We redesign the Venn diagram to extend
this method and encompass a system-wide perspective, as demonstrated in Figure 3. The system comprises two source
variables,X1 and X2, and one target variable, Y , represented by the three intersecting circles.

The area size within the figure signifies the information entropy of the variables or information atoms, and the central
area denotes the joint mutual information, encompassing redundant, unique from X1, unique from X2, and synergistic
information. This arrangement aligns with the Venn diagram framework of PID.
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Figure 3: Venn diagram from different perspectives of PID.

To enhance the comprehensiveness of the framework, it is necessary to elucidate the unexplored section of the updated
Venn diagram 3. In addition to the four sections of joint mutual information, the information entropy of the target variable
Y contains an unaccounted-for area. According to Shannon’s formula, this area corresponds to the joint conditional
entropy of the source variables to the target variable H(Y |X1, X2), which also characterizes the interrelationships
between the target variable and the source variables. In the SID framework, numerous joint conditional entropy exists,
including one that stands out: the joint conditional entropy originating from all variables except the target variable. To
optimize the usefulness of the SID framework, we define this specific joint conditional entropy as the target variable’s
external information (Ext). The definition is grounded in the philosophical assumption that everything is interconnected.
Since joint conditional entropy implies the uncertainty that the internal variables of the system cannot eliminate, the
variables capable of providing this information must exist outside the system. External information can somewhat
emphasize the relationship between the target variable and the entire system rather than just a simple relationship with
other variables. Herefore, it is a kind of information atom within the SID framework.

Definition 2 (External Information). For a system containing variables Y and {X1, · · · , Xn}, the external information
Ext(Y ) is defined as Ext(Y ) = H(Y |X1, X2, · · · , Xn).

Thus, we have decomposed the target variable’s entropy into a finite number of non-repeated information atoms
according to the relationship between it and the other variables in the system. Furthermore, we can apply this
information decomposition method to each variable in the system to decompose the entire information entropy of the
system, which results in a preliminary version of the SID. For the convenience of expression, we use Uni−j , Synij−k,
and Redij−k to represent Un(Xj , Xi), Syn(Xk : Xi, Xj), and Red(Xk : Xi, Xj) respectively. A Venn diagram for a
three-variable system is shown in Figure 4:

3.2 Properties of information atoms

Although the preliminary version of SID can decompose all variables in a system, the decomposition of each variable
is carried out separately, and the description of information atoms is directional (from source variables to the target
variable). For instance, the unique information provided by X1 to X3 in Fig. 4 is not directly related to the unique
information provided by X3 to X1. To make information atoms better reflect the relationship among variables, it is
necessary to explore further the properties of information atoms within the SID framework. In this subsection, we will
prove the symmetry property of information atoms by demonstrating that unique, redundant, and synergistic information
atoms remain stable when different variables are considered target variables.

Theorem 1 (Symmetry of Redundant Information). Let X1, · · · , Xn be the variables in a system. In SID, there is only
one redundant information Red(X1, · · · , Xn), which implies that the redundant information is equal irrespective of
the chosen target variable. Formally, we write Red(X1, · · · , Xn) = Red(Xi : X1, · · · , Xn \Xi),∀i ∈ {1 · · ·n}.
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Figure 4: Venn diagram of SID’s Preliminary version.

Proof. Suppose we have a variable system containing a target variable Y and source variables X1, · · · , Xn. For the
convenience of expression, we use X to represent all the source variables X1, · · · , Xn. The proof is to show that
Red(Y : X , Y ) = Red(Y ;X ) and Red(U : X , Y ) = Red(Y : X , Y ), where U is the union variable of Y and X ,
such that U = (X , Y ). Then, we can demonstrate that redundant information is equal regardless of which variable is
chosen as the target variable.

Step One, to prove Red(Y : X , Y ) = Red(Y ;X ) : Firstly, we add a copy of the target variable Y ′ into the set of
source variables {X} and obtain a new set of source variables {X , Y ′}. According to Axiom 3, we can deduce that
Red(Y : X , Y ′) ≤ Red(Y : X ).

Secondly, by using the contradiction method, we assume Red(Y : X , Y ′) < Red(Y : X ). Therefore, by Lemma 2,
there exists an information atom Qj such that I(Qj ;Y ) = Red(Y : X ) − Red(Y : X , Y ′), Qj < I∩(X → Y ) and
(Qj ̸< I∩(X , Y ′ → Y )). Since (I∩(X → Y ) := sup(I(Q;Y ) such that ∀i, Q < Xi, for all i ∈ 1, · · · , n,Qj < Xi.
And since Qj ̸< I∩(X , Y ′ → Y ), ∃Qj ̸< Y ′. Therefore, I(Qj ;Y

′) = 0. Also, because I(Qj ;Y ) = Red(Y :
X )−Red(Y : X , Y ′) > 0, we get Y ̸= Y ′, which is contradiction, which means Red(Y : X , Y ′) ≥ Red(Y : X ).

Since we have Red(Y : X , Y ′) ≤ Red(Y : X ) and Red(Y : X , Y ′) ≥ Red(Y : X ), the result Red(Y : X , Y ) =
Red(Y : X , Y ′) = Red(Y : X ) is proved.

Step Two, to prove Red(U : X , Y ) = Red(Y : X , Y ): Building upon the conclusion that Red(Y : X , Y ) = Red(Y :

X ), we can replace the target variable with the union variable U = (X , Y ), which combines the target variable Y and
the source variables X . (The entropy of the union variable U can be expressed as H(U) = H(X , Y ).)

Firstly, let’s employ the contradiction method by assuming that Red(U : X , Y ) < Red(Y : X , Y ). Therefore, there
exist a information atom Qj , such that I(Qj ;Y ) = Red(Y : X , Y ) − Red(U : X , Y ), Qj < I∩(X , Y → Y ) and
Qj ̸< I∩(X , Y → U). This implies that there exists an information atom Qk, satisfying Qk < Y,Qk ̸< U and
H(Qk) > 0, which creates a contradiction since it suggests U ̸= ∪(X , Y ). Consequently, we can conclude that
Red(U : X , Y ) ≥ Red(Y : X , Y ).

Secondly, let’s also use the contradiction method by assuming that Red(U : X , Y ) > Red(Y : X , Y ). In this case,
there exist Pj and Pk such that I∩(Pj → Pk) = I∩(X , Y → U) − I∩(X , Y → Y ), with Pk < U , Pk ̸< Y , and
Pj < ∩(X , Y ), which implies that Pj < Y . Considering Axiom 2, which states I∩(Y → Y ) = Red(Y : Y ) = I(Y :
Y ) = H(Y ), we can deduce that for all Pj < Y , if I∩(Pj → Pk) > 0, then Pk < Y , which leads to a contradiction.
Therefore, we obtain Red(U : X , Y ) ≤ Red(Y : X , Y ).

Since we have both Red(U : X , Y ) ≥ Red(Y : X , Y ) and Red(U : X , Y ) ≤ Red(Y : X , Y ), Red(U : X , Y ) =
Red(Y : X , Y ) is proved.

6



System Information Decomposition

In Summary: Since we have established that Red(Y : X , Y ) = Red(Y : X ), and Red(U : X , Y ) = Red(Y : X , Y ),
we can conclude that for all Xi in {X}, Red(Xi : Y, {X} \Xi) = Red(Y : {X}). Therefore, Theorem 1 is proved,
and we can use Red(X1, · · · , Xn) or Red1···n denote the redundant information within the system {X1, · · · , Xn}.

Theorem 2 (Symmetry of Unique Information). Let X1, · · · , Xn be the variables in a system. In SID, the unique
information of any two variables relative to each other is equal, regardless of which is chosen as the target variable.
Formally, we write Un(Xi : Xj) = Un(Xj : Xi), ∀i ̸= j where i, j ∈ {1, · · · , n}.

Proof. According to Lemma 1, unique information is a part of the information provided by the source variable to the
target variable, that is, mutual information minus redundant information. In a three-variable system {X1, X2, X3},
we have Un(Xi : Xj) + Red(Xi : Xj , Xk) = I(Xi;Xj), for all i ̸= j ∈ {1, 2, 3}. Since I(Xi : Xj) =
I(Xj : Xi) according to the symmetry of Shannon’s formula [3], and Red(Xi : Xj , Xk) = Red(Xj : Xi, Xk) =
Red(Xi, Xj , Xk) according to Theorem 1, we have Un(Xi : Xj) = Un(Xj : Xi). Therefore, we can represent this
information atom as Un(Xi, Xj), or Uni,j .

Theorem 3 (Symmetry of Synergistic Information). Let X1, · · · , Xn be the variables in a system. In SID, the
synergistic information of any group of variables is equal, regardless of which is chosen as the target variable. Formally,
we write Syn(X1, · · · , Xn) = Syn(Xi : {X1, · · · , Xn} \Xi),∀i ∈ {1 · · ·n}.

Proof. According to Lemma 1, Theorem 1, Theorem 2, and the chain rule of Shannon formula, for a three-variable
system with Xi, Xj , Xk:

Syn(Xk : Xi, Xj) = H(Xk|Xj)−H(Xk|Xi, Xj)− Un(Xi, Xk)

= (H(Xj , Xk)−H(Xj))− (H(Xi, Xj , Xk)−H(Xi, Xj))− Un(Xi, Xk)

= H(Xj , Xk) +H(Xi, Xj)−H(Xj)−H(Xi, Xj , Xk)− Un(Xi, Xk)

= (H(Xi, Xj)−H(Xj))− (H(Xi, Xj , Xk)−H(Xj , Xk))− Un(Xi, Xk)

= H(Xi|Xj)−H(Xi|Xj , Xk)− Un(Xi, Xk)

= Syn(Xi : Xj , Xk)

Therefore, we proved Theorem 3 and we can write synergistic information in the form of Syn(X1, · · · , Xn) or
Syn1···n.

Based on the Theorem 1 2 3 (the symmetry of information atoms), the SID framework can be merged into the formal
version in Figure 5. In the formal version of SID, the concept of a target variable is canceled, and all variables are
equally decomposed according to their relationship with other variables. Specifically, redundant information and unique
information are merged. Redundant information (atoms) in any group of variables and unique information (atoms)
between any two variables appear only once in the Venn diagram. In contrast, synergistic information (atoms) appear in
each participating variable with the same value, and each variable contains one external information (atom). So far,
we can give the formal definition of SID: SID is a system decomposition framework based on information entropy
that can divide the whole information entropy of the system into non-overlapping information atoms according to
the higher-order relationship between variables. In this framework, redundant information represents the common
or overlapping information of all the variables; unique information represents information that is only owned by two
variables but not by the third variable; and synergistic information represents the information that can be known from a
variable only when the other two variables are observed simultaneously. The entropy of these information atoms reflects
the properties of the set that contain different subsets of variables ({{Xi, · · · }, · · · , {Xj , · · · }}, i, j ∈ {1 · · ·n}). The
Venn diagrams and examples in this paper present only the simple case of a set with three subsets of variables, and each
containing only one variable ({{X1}, {X2}, {X3}}).

3.3 SID and Information Measure

In addition to Lemma 1 and Definition 2 for the relationship between SID and mutual information, conditional entropy,
and joint conditional entropy, there are still some important information measures that deserve our attention.

Lemma 3 (Joint Entropy Decomposition). For any subsystem with 3 variables, H(X1, X2, X3) = Ext(X1) +
Ext(X2) + Ext(X3) + Un(X1, X2) + Un(X1, X3) + Un(X2, X3) + 2 ∗ Syn(X1, X2, X3) +Red(X1, X2, X3).
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Figure 5: Venn diagram of SID’s Formal Version.

Based on lemma 3, which can be easily proved by Lemma 1, we can have a deeper understanding of information atoms,
that is, any information atom can be understood as some information stored by m variables, and at least n variables
need to be known to obtain the information (m > n,m, n ∈ Z). Specifically, the external information of the system
is owned by the variable independently, so m = 1 and n = 1; redundant information is owned by all variables, so
m = number of variables and n = 1; unique information is owned by two variables, Therefore m = 2 and n = 1;
synergistic information is shared by all variables, so m = number of variables and n = number of variables− 1.
Therefore, the joint entropy decomposition is the sum of each information atom multiplied by its m− n quantity. This
perspective will deepen our understanding of the essence of information atoms and facilitate our exploration of the joint
entropy decomposition of systems with more than three variables.
Lemma 4 (Intersection Information Decomposition). For any system with 3 variables, its Intersection Information
CoI(X1, X2, X3) = Red(X1, X2, X3)− Syn(X1, X2, X3).

According to the calculation of CoI(X,Y, Z) = H(X1, X2, X3) + H(X1) + H(X2) + H(X3) − H(X1, X2) −
H(X1, X3)−H(X2, X3), Col is symmetry and unique for a system, which also verifies the symmetry of information
atoms (Syn and Red) to some extent.

3.4 Calculation of SID

Although we have proposed the framework of SID and proved the symmetry of information atoms, the problem of exact
computation still needs to be fully resolved. Therefore, in this paper, we alternatively propose the properties that the
calculation method of the SID framework should satisfy and accept any method that can meet these properties.
Property 1 (Shannon’s formula). The sum of certain information atoms should equal the mutual information and
conditional information. It is Lemma 1 for a three-variable system.

The information atoms can be regarded as a finer-grained division of Shannon’s information entropy calculation, so
calculation methods such as information entropy, mutual information, and conditional entropy can accurately calculate
the sum of some information atoms, which means that the SID’s calculation should conform to the Shannon formula. It
is worth noting that when the specific PID calculation method calculates the value of one information atom, the rest of
the information atoms will also get the results according to Lemma 1. This means that the calculation method of SID
only needs to focus on one information atom in the system.
Property 2 (Computational Symmetry). The results of SID calculation should satisfy Theorems 1, 2, and 3.

For the same system, the order of variables in the calculation method will not affect the results. This ensures that
the SID framework provides a consistent decomposition of information entropy, regardless of the order of variables.
Specifically, for redundant information and synergistic information, changing the order of any variable in the calculation
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method will not change the result; for unique information, exchanging the positions of the two focused variables or
changing the order of the remaining variables will not change the result.

Property 3 (Non-negativity of information atoms). After applying SID, the value of any information atom is greater
than or equal to zero. This non-negativity property holds because information measures and the degree of uncertainty
are always non-negative as per the principles of information theory.

Although the computational problem of information atoms has yet to be solved entirely, just like finding the Lyapunov
function, for a specific case, we can often use specific methods, analysis, and some intuition to get the result. For
example, a direct and rigorous method is to use properties 1 and 3.

Proposition 1 (Direct Method). Suppose certain mutual information or conditional entropy is zero. In that case, we
can directly conclude that: (1) the redundant information and the corresponding unique information are zero if some
mutual information is zero, or (2) the synergistic information and the corresponding unique information are zero if
some conditional entropy is zero. Then, we can obtain the values of the remaining information atoms.

For a more general scenario, in the next section, we will give a calculation formula that can be applied to most situations
and a neural network method that can provide approximate values.

4 Measuring Higher-order Relationship

In this section, through a series of case analyses, we elucidate the unique properties of the SID framework and
its capacity to uncover higher-order relationships that surpass the capabilities of current information and probability
measures. We propose two novel methods for calculating information atoms and validate their accuracy and applicability
by examining the cases.

4.1 Case Analysis

Without loss of generality, we can construct a case that includes both macro and micro perspectives, which can not only
analyze the properties of SID at the macro level but also obtain ground truth through known micro properties. First, we
construct six uniformly distributed Boolean variables a, b, c, d, e, f , ensuring that these variables are independent. We
then create new variables by performing XOR operations on the existing variables: let g = c⊕ e, h = d⊕ f , i = c⊕ f ,
and j = d⊕ e.

Next, we form new macro variables by combining these micro variables: let X1 = abcd, X2 = abef , X3 = cdef ,
X4 = aceh, X5 = abgh, X6 = abij. The combination method involves simple splicing; e.g., when a = 1, b = 0,
c = 1, d = 1, X1 is equal to 1011. Appendix A provides a concrete example that matches this design. As the
micro-level variables are independent of each other, this combination ensures that the properties of the macro variables
are a linear superposition of the properties of the micro variables.

We then fix X1 and X2 as constants and form different three-variable systems (Cases 1-4) by adding X3, X4, X5, and
X6, respectively. We analyze the differences between these three-variable systems.

It is worth noting that these four cases yield identical results under existing probability theory and information theory
measures. The system has 64 equally probable outcomes, each variable has 16 equally probable outcomes, the total
information amount in the system is 6, the pairwise mutual information between variables is 2, and the conditional
entropy is 2. Existing systems analysis methods cannot identify the differences observed in these four examples.

However, the four systems exhibit three distinct internal characteristics under the SID framework. Since these examples
comprise mutually independent micro variables, we can intuitively map the micro variables to the information atoms in
each case. In Case 1, the micro variables a, b provide 2-bit unique information between X1 and X2 (c, d correspond to
X1 and X3, e, f correspond to X2 and X3). In Case 2, micro variable a provides 1-bit redundant information, while
b, c, and e provide 1-bit unique information between X1 and X2, X1 and X4, X2 and X4 respectively. The XOR
relationship between d − f − h provides 1-bit synergistic information between variables. In Cases 3 and 4, micro
variables a and b provide 2-bit redundant information, and XOR relationships of c− e− g, d− f − h, and c− f − i,
d− e− j provide 2-bit synergistic information for the two cases, respectively. Figure 6 displays the SID Venn diagrams
for Cases 1–4.

4.2 A Calculation Formula

Although we can calculate some cases through the Direct Method 1 or from the perspective of case construction like
previous case analysis 4.1, to make the SID framework applicable in a broader range of scenarios, we need to find a
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(a) Case 1. (b) Case 2.

(c) Case 3. (d) Case 4.

Figure 6: SID Venn Diagrams for Cases 1-4.

general solution for information atoms. After analyzing many known-result cases and combining some intuitions, we
reveal the correspondence between the values of information atoms and certain structures on the data, which we call
Synergistic Block and Unique Block. Based on this correspondence, we propose an identification method for unique
information and synergistic information and further construct a formula for calculating synergistic information that is
applicable in most cases.

Definition 3 (Synergistic Block and Unique Block). For a full probability table containing the values of all variables,
if we fix a certain value of a variable (let X1 = x1), we can get the possible values (jand k) of the remaining variables
under this condition (j ∈ {X2|X1 = x1}, k ∈ {X3|X1 = x1}). Then, mark all these values (j and k) of the remaining
variables (X2, X3) while the fixed variables take other values (X2 = j|X1 ̸= x1 , X3 = k|X1 ̸= x1). For all values
of remaining variables where both occur simultaneously, such that X2 = j and X3 = k when X1 ̸= x1, we call it
Synergistic Block. For all values of remaining variables where only one occurs, we call it Unique Block, such that
X2 = j and X3 ̸= k when X1 ̸= x1 for X2, or X2 ̸= j and X3 = k when X1 ̸= x1 for X3.

Take Table A.1 as an example. We fixed the value of X1 = 0000 and marked the values of all variables in this scenario
in yellow. Then, we mark the values where X2 to X6 still take the same value when X1 ̸= 0000 as pink.Taking X1, X2

and X4 as examples, we marked the synergistic blocks in bold, and marked the unique blocks of X2 and X3 in italics.
Besides, although not as obvious as the previous two, redundant information also has corresponding redundant blocks.
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Proposition 2 (Information Atom Identification). The synergistic information is greater than zero if and only if the
synergistic block exists. For a three-variable system {X1, X2, X3}, Syn(X1, X2, X3) > 0 iff P (X2 = j, X3 = k,
X1 ̸= x1, j ∈ {X2|X1 = x1}, k ∈ {X3|X1 = x1}) > 0. The unique information between two variables is greater
than zero if and only if fix any of them. The remaining variable has a unique block for a three-variable system. That is
Un(X1, X2) > 0 iff P (X2 ̸= j, X3 = k, X1 ̸= x1, j ∈ {X2|X1 = x1}, k ∈ {X3|X1 = x1}) > 0.

Based on the above Proposition, we construct a calculation formula to calculate synergistic information. The formula
satisfies properties 1, 2, and 3 in most cases. The specific calculation method for synergistic information for a
three-variable system involving X1, X2, and X3 is as follows:

Syn(X1, X2, X3) = (
∑

P (x1, x2, x3)∗

log(
P (X2 = x2, X3 = k, k ∈ {X3|X1 = x1})

P (X2 = x2|X1 = x1)
∗ P (X3 = x3, X2 = j, j ∈ {X2|X1 = x1})

P (X3 = x3|X1 = x1)
∗

P (X1 = x1)

P (X2 = j,X3 = k, j ∈ {X2|X1 = x1}, k ∈ {X3|X1 = x1})
))−H(X1|X2, X3) (1)

In the previous case 4.1, since the data is relatively uniform, fixing any value of X1 will have the same result, so we can
quickly calculate the synergistic information of the four cases by fixing X1 = 0000. In these cases, the log part of the
formula can be intuitively understood as log (yellow + synergistic block / yellow), which is log(4/4) = 0 in case 1;
log(8/4) = 1 in case 2; log(16/4) = 2 in cases 3 and 4. Unique information can also be calculated by a similar method
like log(yellow + unique block / yellow).

4.3 An Approximate Method by Neural Information Squeezer

Another possible method is to use a generalized form of neural information squeezer (NIS, a machine learning framework
using invertible neural networks proposed in Ref [21]) to calculate the redundancy of the system numerically and then
to derive other information atoms.

Figure 7: A generalized form of the Neural Information Squeezer network (NIS, see [21]) to calculate mutual
information(a) and redundancy(b) of a trivariate system (X,Y, Z). In (a), two invertible neural networks (ψ, ϕ) can
play the roles of encoder and decoder, respectively. The whole network accepts the input X to predict Y , and the
intermediate variable ŶX , which is the minimum low-dimensional representation of X , can be used to calculate the
mutual information between X and Y . In (b), two NIS networks are stacked together. The first is just the network in (a),
and the intermediate variable ŶX is fed into the second NIS network to predict Z. Then the intermediate variable, ẐŶX

which is the minimum low-dimensional representation of ŶX , can be used to calculate the redundancy of the system
{X,Y, Z}.

As shown in Figure 7(a), the NIS framework has two parts: an encoder and a decoder. The encoder can accept any real
vector variable with dimension p. It contains two operators: a bijector ψ modeled by an invertible neural network (see
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details in [21]) with dimension p and a projector χ which can drop out the last p−q dimensions from the variable ψp(X)

to form variable U . The remaining part (ŶX ) can be regarded as a low-dimensional representation of X , which will be
used to construct the target Y via another invertible neural network ϕ by mapping [V, ŶX ] into Ŷ , where V ∼ N (0, I)
is a p′ − q dimensional random noise with Gaussian distribution, where p′ is the dimension of Y . Then, we need to train
the whole framework to conform that (1) Ŷ approximates the target variable Y , and (2) U follows a p− q dimensional
standard normal distribution. It can be proven that the following proposition holds:
Proposition 3. For any random variables X with p dimension and Y with p′ dimension, and suppose p and p′ are very
large, then we can use the framework of Figure 7(a) to predict Y by squeezing the information channel of ŶX as the
minimum dimension q∗ but satisfying Ŷ ≈ Y and U ∼ N (0, I). Further, if we suppose H(X) > H(X|Y ) > 0, then:

H(ŶX) ≈ I(X;Y ), (2)

and
H(U) ≈ H(X|Y ). (3)

We will provide the proof in the appendix. We require that the dimensions ofX,Y are significant because the maximal q
for accurate predictions may not be an integer if p, p′ are small. Therefore, we can enlarge the dimensions by duplicating
the vectors.

We can use the NIS network twice to calculate the redundancy for a system with three variables: X,Y, Z, as shown in
Figure 7(b). The first NIS network is to use the intermediate variable ŶX , the dense low-dimensional representation
of X with the minimum dimension q, to construct Y . Then, the second NIS network is to use ẐŶX

, the minimal
dimensional dense low-dimensional representation of ŶX to construct Z. After these two steps, the Shannon entropy
of the intermediate variable of NIS2: ẐŶX

can approach the redundancy. Thus, the redundancy of the system can be
calculated approximately in the following way:

Red(X,Y, Z) ≈ H(ẐŶX
). (4)

To verify that Red(X,Y, Z) calculated in this way can be regarded as the redundancy of the system, we need to prove
that Equation 4 satisfies the property of symmetry for all the permutations of X,Y, Z, i.e., the following proposition:
Proposition 4. For a system with three random variables X,Y, Z, without losing generality, we suppose that the
conditional information satisfies H(X) > H(X|Y ) > 0, H(X) > H(X|Z) > 0, and H(Y ) > H(Y |X) > 0, then
the redundancy calculated in Equation 4 is symmetric:

Red(X,Y, Z) ≈ Red(X,Z, Y ). (5)

It is noticed that Red(X,Z, Y ) ≈ H(ŶẐX
) is different from Red(X,Y, Z) in the way that the order of the predictions

from X is Z and then Y .

The proof of Theorem 4 is also provided in the appendix. By calculating redundancy, we can easily calculate unique
and synergistic information atoms. Furthermore, we can extend the method to systems with more variables by stacking
more NIS networks similarly as shown in Figure 7 (b).

However, there are two disadvantages to this method. One is that the calculation needs to be more accurate and
requires many training epochs. Second, the number of dimensions of all variables must be large enough to discard the
independent information among the variables by dropping out the dimensions. Further studies are needed.

To verify that the NIS framework can calculate redundant information, we conducted numerical experiments using
Case3 as an example, as Figure8 shows, where the mutual information between each pair of variables and the redundant
information is 2 bits.

In this experiment, variable X1 is used as the input of NIS1 in the framework, with X2 predicted as the target Y , and the
intermediate variable ŶX is fed into NIS2 to predict X3. This experiment expanded inputs and targets to 64 dimensions
by directly replicating the original variables and letting the two intermediate variables in the NIS maintain consistent
dimensions, denoted by q. The minimum dimension of ŶX and ẐŶX

are selected by monitoring the changes in the loss
curves.

From the above results, it can be seen that when q, the dimension of the intermediate variable, is relatively large, the
entropy of the intermediate variable is entirely accurate for mutual information or redundant information. As the q
drops below a threshold, the loss signally increases, indicating that the intermediate variable cannot capture all the
mutual information and the redundant information.
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Figure 8: (a) The changes of H(ŶX) in NIS1 under q = 4, 2, 1 respectively; (b) The changes of H(ẐŶX
) in NIS2 under

q = 4, 2, 1 respectively; (c) The changes of training loss in NIS1 under q = 4, 2, 1 respectively; (d) The changes of
training loss in NIS2 under q = 4, 2, 1 respectively. The same experiments were conducted for the other three cases,
and the redundant information could be accurately calculated under the NIS framework.
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5 Discussion

The holism-versus-reductionism debate persists in modern literature [22]. Those with a reductionist view believe that
any system can be divided into many subsystems. We can fully understand the entire system by studying the properties
of the subsystems and their connections, which is also the research philosophy followed by most disciplines [23]. But
holism holds that the system should be treated as a whole because the splitting of the system will inevitably lose the
understanding of some of its properties [24]. This contradiction seems irreconcilable when we don’t discuss how to
split the system in detail.

However, the SID offers a perspective that can explain this conflict by accounting for higher-order relationships in
the system that are not captured by previous measures. To better divide the different measures, we divide information
entropy into first-order measures, which reflect a certain attribute of a single variable. On the other hand, mutual
information and conditional entropy can be divided into second-order measures, which capture some aspects of
pairwise relationships between variables [25]. Although among the second-order measurement, information theory’s
cross-entropy can measure the information shared among multiple variables. It still captures linear superpositions of
second-order relationships, which provides limited insight into multivariate interactions. But under the SID framework,
redundant, synergistic, and unique information can be regarded as three- or higher-order measures, revealing a new
dimension of multivariate relationships entirely distinct from the first and second orders and facilitating a more profound
comprehension of higher-order system relationships. In the case analysis, the internal structure of Case 1 aligns well
with the results of the second-order measures and can be considered a reducible, decomposable system. Cases 2, 3, and
4, however, have internal structures that cannot be captured by second-order measures and are thus regarded by holism
as systems that cannot be decomposed and understood individually. To some extent, SID and the case analysis offer an
explanation that bridges the gap between holism and reductionism; some of the system properties that holism insists
cannot be understood separately might be explained by higher-order measures or decomposition methods.

The understanding of SID and higher-order measures not only provides a philosophical perspective but also can be
applied in many specific fields. A foreseeable application across many domains is that SID deepens our understanding
of data, measures, and information. In the case analysis, the data in the table contains information about the construction
of the four systems. Still, probability or existing information measures cannot capture this information. That means the
incompleteness of measures may limit our ability to analyze existing data, even if we have obtained ideal data. Therefore,
including higher-order information measures in the analysis of complex systems may offer valuable insights, especially
in cases where traditional information theory measures fail to discern differences among systems. A direction worth
exploring is extending SID to the field of higher-order network quantitative analysis [26]. It may potentially impact the
analysis and understanding of real-world complex systems across various domains [27], since the framework offers a
richer understanding of the relationships and interactions between system variables. For example, in studying neural
networks and brain connectivity [28], the SID framework can provide further insights into the information flow between
multiple neurons or brain regions; in ecological [29], financial or social systems, the quantitative characterization of
high-order relationships among multiple variables can assist in the development of more accurate models and forecasts,
as well as the design of effective control methods; in Machine Learning, the SID framework might be utilized in the
development and analysis of machine learning models and algorithms. In summary, SID, as progress in the underlying
measurement, may play a role in many application scenarios, which is also the focus of our next stage of work.

Another field where SID may impact is Causal Science since it studies the intrinsic relationships between multiple
variables, just like the SID framework. Conditional independence plays an important role in causal discovery and causal
inference in multivariate systems [30]. In the quantitative calculation of SID, conditional independence also plays a
similar role in eliminating the uncertainty of higher-order relations. Refer to the calculation method first. Therefore,
studying the properties of conditional independence within the framework of SID may provide a bridge between causal
science and SID. The benefits of this association are mutual: from the perspective of Pearl Causal Hierarchy theory [31],
SID is a research technique that utilizes observational data, which is at the lowest rung of the causal ladder. Investigating
whether lifting the approach to higher rungs of the causal ladder can yield more profound insights into the system is an
area worth exploring, for instance, by incorporating causal graphs (DAGs) into SID methods, etc.

In addition to the above-mentioned promising progress and expectations, several limitations are still worthy of attention.
The first limitation is the need for a fully compatible quantitative method for the proposed framework, which restricts the
practical application of SID in addressing real-world problems. As we continue to develop and refine the SID framework,
it is a priority to develop robust computational methods for calculating SID components and consider how higher-
order information measures can be integrated into existing analytical approaches. Furthermore, the existing proofs of
framework properties and computational methods have only been established for three-variable systems. Although
extending current work to more-than-three-variable systems is not a formidable challenge, it contains many aspects of
work, such as how to intuitively present the decomposition results of multivariate systems on a two-dimensional plane,
how to optimize the calculation algorithm to avoid the exponential calculation cost as the number of variables increases;
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etc., which will be considered in the next stage of research. For those mentioned above and any possible problems, we
cordially invite other scholars interested in this field to collaborate on addressing the existing challenges of SID and
contribute to the model’s refinement.

6 Conclusion

In this study, we introduced the System Information Decomposition (SID) framework, which offers novel insights for
decomposing complex systems and analyzing higher-order relationships while addressing the limitations of existing
information decomposition methods. By proving the symmetries of information atoms and connecting them to higher-
order relationships, we show that the SID framework can provide insights and advance beyond existing measures in
understanding the internal interactions and dynamics of complex systems. Furthermore, we explored the far-reaching
implications of SID’s unveiling of higher-order measures on the philosophical aspects of systems research, higher-order
networks, and causal science. Even though current research on SID still faces challenges in quantitative calculations
and multivariate analysis, continued collaboration and exploration by the scientific community will help overcome these
obstacles. In conclusion, the SID framework signifies a promising new direction for investigating complex systems
and information decomposition. We anticipate that the SID analysis framework will serve as a valuable tool across an
expanding array of fields in the future.
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A Appendix

A.1 Case Table

X1 X2 X3 X4 X5 X6
a b c d a b e f c d e f a c e h a b g h a b i j
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0
0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1
0 0 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1
0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 1 0 0 1 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 0 0
0 0 0 1 0 0 1 1 0 1 1 1 0 0 1 0 0 0 1 0 0 0 1 0
0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0
0 0 1 0 0 0 0 1 1 0 0 1 0 1 0 1 0 0 1 1 0 0 0 0
0 0 1 0 0 0 1 0 1 0 1 0 0 1 1 0 0 0 0 0 0 0 1 1
0 0 1 0 0 0 1 1 1 0 1 1 0 1 1 1 0 0 0 1 0 0 0 1
0 0 1 1 0 0 0 0 1 1 0 0 0 1 0 1 0 0 1 1 0 0 1 1
0 0 1 1 0 0 0 1 1 1 0 1 0 1 0 0 0 0 1 0 0 0 0 1
0 0 1 1 0 0 1 0 1 1 1 0 0 1 1 1 0 0 0 1 0 0 1 0
0 0 1 1 0 0 1 1 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0
0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0 1 1 0
0 1 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 1 1 0 0 1 0 1
0 1 0 0 0 1 1 1 0 0 1 1 0 0 1 1 0 1 1 1 0 1 1 1
0 1 0 1 0 1 0 0 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 1 1 1
0 1 0 1 0 1 1 0 0 1 1 0 0 0 1 1 0 1 1 1 0 1 0 0
0 1 0 1 0 1 1 1 0 1 1 1 0 0 1 0 0 1 1 0 0 1 1 0
0 1 1 0 0 1 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0 1 1 0
0 1 1 0 0 1 0 1 1 0 0 1 0 1 0 1 0 1 1 1 0 1 0 0
0 1 1 0 0 1 1 0 1 0 1 0 0 1 1 0 0 1 0 0 0 1 1 1
0 1 1 0 0 1 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 0 1
0 1 1 1 0 1 0 0 1 1 0 0 0 1 0 1 0 1 1 1 0 1 1 1
0 1 1 1 0 1 0 1 1 1 0 1 0 1 0 0 0 1 1 0 0 1 0 1
0 1 1 1 0 1 1 0 1 1 1 0 0 1 1 1 0 1 0 1 0 1 1 0
0 1 1 1 0 1 1 1 1 1 1 1 0 1 1 0 0 1 0 0 0 1 0 0
1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
1 0 0 0 1 0 0 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0
1 0 0 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1
1 0 0 0 1 0 1 1 0 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1
1 0 0 1 1 0 0 0 0 1 0 0 1 0 0 1 1 0 0 1 1 0 0 1
1 0 0 1 1 0 0 1 0 1 0 1 1 0 0 0 1 0 0 0 1 0 1 1
1 0 0 1 1 0 1 0 0 1 1 0 1 0 1 1 1 0 1 1 1 0 0 0
1 0 0 1 1 0 1 1 0 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0
1 0 1 0 1 0 0 0 1 0 0 0 1 1 0 0 1 0 1 0 1 0 1 0
1 0 1 0 1 0 0 1 1 0 0 1 1 1 0 1 1 0 1 1 1 0 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 0 1 0 0 0 1 0 1 1
1 0 1 0 1 0 1 1 1 0 1 1 1 1 1 1 1 0 0 1 1 0 0 1
1 0 1 1 1 0 0 0 1 1 0 0 1 1 0 1 1 0 1 1 1 0 1 1
1 0 1 1 1 0 0 1 1 1 0 1 1 1 0 0 1 0 1 0 1 0 0 1
1 0 1 1 1 0 1 0 1 1 1 0 1 1 1 1 1 0 0 1 1 0 1 0
1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 1 0 0
1 1 0 0 1 1 0 1 0 0 0 1 1 0 0 1 1 1 0 1 1 1 1 0
1 1 0 0 1 1 1 0 0 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1
1 1 0 0 1 1 1 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1
1 1 0 1 1 1 0 0 0 1 0 0 1 0 0 1 1 1 0 1 1 1 0 1
1 1 0 1 1 1 0 1 0 1 0 1 1 0 0 0 1 1 0 0 1 1 1 1
1 1 0 1 1 1 1 0 0 1 1 0 1 0 1 1 1 1 1 1 1 1 0 0
1 1 0 1 1 1 1 1 0 1 1 1 1 0 1 0 1 1 1 0 1 1 1 0
1 1 1 0 1 1 0 0 1 0 0 0 1 1 0 0 1 1 1 0 1 1 1 0
1 1 1 0 1 1 0 1 1 0 0 1 1 1 0 1 1 1 1 1 1 1 0 0
1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 0 1 1 1 1
1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 0 1
1 1 1 1 1 1 0 0 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 0 1 1 1 0 1 1 1 0 0 1 1 1 0 1 1 0 1
1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 1 1 0 0
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A.2 Proof of Propositions for Neural Information Squeezer Network

Here we provide mathematical proves for the two propositions of the neural network framework to calculate mutual
information and redundancy.

First, we rephrase Proposition 1, then give the proof here.

Proposition 1: For any random variables X and Y , we can use the framework of Figure 7(a) to predict Y by squeezing
the information channel of ŶX as the minimum dimension but satisfying Ŷ ≈ Y and U ∼ N (0, I). And we suppose
the conditional entropy H(X|Y ) > 0 holds, then:

H(ŶX) ≈ I(X;Y ) (6)

Proof. The whole structure of the alternative NIS network (Figure 7(a)) can be regarded as a similar structure as in Ref
[21], but the dynamics learner is absent. However, we can understand the dynamic is a fixed identical mapping. In this
way, all the conclusions proved in [21] can be applied here. Thus, we have:

I(X;Y ) ≈ I(ŶX ; ŶX) = H(ŶX) (7)

if all the neural networks are well-trained. The first equation holds because of Theorem 2 (information bottle-neck) and
Theorem 3(mutual information of the model will be closed to the data for a well-trained framework) in [21], the second
holds when q is minimized such that the information channel of ŶX is squeezed as possible as we can and because of
the property of mutual information.

Further, because U is an independent Gaussian noise, therefore:

H(U) = H(ψ(X))−H(ŶX) ≈ H(X)− I(X;Y ) = H(X|Y ) (8)

The approximated equation holds because ψ is a bijector that can keep the entropy unchanged, and Equation 7 holds.
Therefore, we can prove Proposition 1.

To calculate the redundancy for a system with three variables, we can further feed the variable of ŶX into another NIS
network to predict Z and narrow down the information channel of the intermediate variable ẐŶX

to get the minimum
dimension q∗

′
for ẐŶX

, then its Shannon entropy can approach the redundancy. The redundancy satisfies the property
of permutation symmetry for all the variables. We can prove the following proposition:

Proposition 2: For a system with three random variables X,Y, Z, suppose the conditional information H(X|Y ) >
0, H(X|Z) > 0, then the redundancy calculated by Equation 4 is symmetric, which means:

Red(X,Y, Z) ≈ Red(X,Z, Y ) (9)

Proof. If we accept the definition of Equation 4, then:

Red(X,Y, Z) ≈ H(ẐŶX
) = H(ŶX)−H(UŶX

) = H(X)−H(X|Y )−H(ŶX |Z), (10)

where UŶX
is the discarded Gaussian noise to predict ŶZ .

In another way, we can use X to predict Z. The intermediate variable ẐX can be used to predict Y , and the intermediate
variable ŶẐX

can be used to approximate the redundancy which is denoted as Red(X,Z, Y ). Therefore,

Red(X,Z, Y ) ≈ H(X)−H(X|Z)−H(ẐX |Y ). (11)

Because the discarded noise variable UŶX
in the process of predicting Y by X is independent on all the variables,

therefore:
H(UŶX

) = H(UŶX
|Z) = H(UŶX

|Y, Z) = H(X|Y,Z), (12)

Similarly, the discarded noise variable UẐŶX

in the process of predicting Z by ŶX is also independent on all the other

variables, and ψ(X) is the combination of UŶX
and ŶX , thus:
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H(X|Y,Z) = H(UŶX
|Z) = H(X|Z)−H(ŶX |Z). (13)

In the same way, we can obtain:

H(X|Z, Y ) = H(UẐX
|Y ) = H(X|Y )−H(ẐX |Y ). (14)

Because H(X|Y,Z) = H(X|Z)−H(ŶX |Z) = H(X|Y, Z) = H(X|Y )−H(ẐX |Y ), therefore:

H(X|Z) +H(ẐX |Y ) = H(X|Y ) +H(ŶX |Z) (15)
and the Equation 10 and 11 lead to:

Red(X,Y, Z) = Red(X,Z, Y ). (16)

This equation is general for all the permutations of X,Y , and Z. Thus, the redundancy defined in the neural network
NIS satisfies permutation symmetry.

20


	Introduction
	Information Decomposition
	Information Theory Framework
	Partial Information Decomposition Framework
	A set-theoretic understanding of PID

	System Information Decomposition
	Extension of PID in a System Scenario
	Properties of information atoms
	SID and Information Measure
	Calculation of SID

	Measuring Higher-order Relationship
	Case Analysis
	A Calculation Formula
	An Approximate Method by Neural Information Squeezer

	Discussion
	Conclusion
	Appendix
	Case Table
	Proof of Propositions for Neural Information Squeezer Network


